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Abstract—Explicit expressions for crack-tip fields of a crack. dynamically extending along the
interface of an anisotropic bimaterial, are presented. The deformation considered is a combination
of plane strain and anti-plane strain deformation. The amplitudes of the crack-tip fields are char-
acterized by the stress intensity factors recently introduced by Wu (1989a. J. Appl. Mech.. in press).
The stress intensity factors due to dislocations and body forces for a steadily moving semi-infinite
crack are derived and the weight functions for crack face loading are given.

[. INTRODUCTION

The work presented here is an extension of Wu (1989a). In that work. explicit real-form
expressions for a,,, i =1,2,3, ahead of a stationary interface crack in an anisotropic
bimaterial, as well as relative crack face displacements are given. These expressions contain
three newly defined real-valued stress intensity factors. The stress intensity factors are
defined so that as the material is homogencous, the usual definition of the stress intensity
factors is recovered. The strain energy release rate due to crack extension is given by a
quadratic form of the new stress intensity factors.

In this paper, an extending interface crack in a general anisotropic bimaterial is
considered. Willis (1971) investigated the energy release rate of a steadily extending interface
crack using an approach different from the one employed here. He gave an expression for
the energy release rate but did not derive the crack-tip fields. The simpler case of a
dynamically propagating crack in & homogeneous medium was treated by Wu (1989b).
Brock and Achenbach (1973) analyzed the extension of an interface crack under the
influence of transient horizontally polarized shear waves. In this paper, explicit expressions
for the full dynamic interface crack-tip fields and energy release rate are derived using the
Stroh formalism for anisotropic elasticity. It is shown that similar to the static crack-tip
fields considered by Wu (1989a), real-valued stress intensity factors can be defined to
characterize the dynamic crack-tip ficlds and that the dynamic energy release rate is ex-
pressed in terms of these stress intensity factors. For comparison purposes, the expressions
for the crack-tip fields and energy release rate are specialized for isotropic bimaterials
for dynamic as well as static cracks.

It is shown by Wu (1988) that with the knowledge of crack-tip ficlds and encrgy rclease
rates, the stress intensity factors due to dislocations and body forces for a steadily extending
semi-infinite crack can be determined. The result is extended here to the case of a semi-
infinite interface crack.

The plan of the paper is as follows. In Section 2, basic equations and the Stroh
formalism arc outlined. In Section 3, explicit expressions (or the crack-tip ficlds and cnergy
release rate for gencral anisotropic bimaterials are derived. In Section 4, the expressions
are specialized for the case of isotropic bimaterials. Finally, stress intensity factors due to
dislocations and body forces are given.

Throughout this paper, all indices range from | to 3 and the convention of summation
over a repeated Latin index is adopted unless otherwise noted. Summation over Greek
indices is expressed explicitly. Bold-faced symbols are used to represent matrices. The
quantities associated with the lower half-space are distinguished by a prime.
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Fig. 1. An extending interface crack in anisotropic bimaterial.

2. BASIC EQUATIONS AND STROH FORMALISM

Consider a crack running along the interface in an anisotropic bimaterial. Let a moving
coordinate system be attached to the crack tip. The plane of the interface is taken to be the
x—x; plane and the crack front is assumed to extend infinitely in the x;-direction. The
configuration is shown in Fig. 1. It is shown by Wu (1989b) that with respect to the moving
coordinate system, the equations of motion for the crack-tip ficlds are given by

3?2 2
0w, .,
T =Py (1)

v, dx, oxi
for the upper half-space. In eqn (1), C is the clasticity tensor, u is the displacement vector,
¢ is the density and ¢ is the instantancous crack velocity.
For subsonic motion, the general expression of the displacement vector u can be written
as (Stroh, 1958)

3
W = 2‘”[ z Aka.fx(:x)]ﬁ (2)

3wl

where # denotes the real part, A = [A|, A., A;] and z, = x, +p,x,, the vector A, and scalar
p, being the eigenvector and the cigenvalue with positive imaginary part, respectively, of
the following equation

[Cikt —pt?0u +(Cire2 + Cizt) P+ Cone2p*1 A = 0, 3)

where J, is the Kronecker delta. The stresses can be expressed in terms of the stress function
®as

o Cu
= — L L 4
o dx, to ox,’ @)
o,
2 = "“i. 5
(5] axl ( )
The stress function @ can be represented as

3
o, = 2:4?[ by Bk,f,(:,)]. (6)

x|

where the matrix B is given by
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B, = (Ch1ia+P:Cix2) Aia- Y

The expressions for u” and @’ for the lower half-space can be obtained by adding primes to
the quantities in eqns (2) and (6).

3. CRACK-TIP FIELDS

In this section the crack-tip fields of an extending interface crack are derived using the
Stroh formalism discussed in the last section.

The functions f,(z,) and f;(z;) for which the tractions are continuous across x; =0
and the displacements are continuous across the interface x; >0 and x, =0, can be
expressed as

fi(z) = BNy Wiz, (®)
Sa(2) = =B, 'NWi(z), )
where the function ¥(:) has the following property
¥(:) = -0 (10)
In egns (8) and (9). thc matrix N is given by
N=M"", (amn
M=AB '-A'B " (12)
The matrix M can be expressed as (Ting, 1986)
M = —(W+iD), (13)

where W is antisymmetric and D is symmetric. Both W and D are real matrices. Similarly,
the matrix N can be expressed as

N = W+iD, (14)
where W is antisymmetric and D is symmetric.
Substituting eqn (8) into eqn (6) and imposing traction-free conditions for the upper
crack face leads to

N¥'(x,)—N¥ (x,) =0. (15)

For bounded displacements, the functions ‘P, satisfying eqn (15) and yielding singular stress
ficld can be expressed as

¥E) = — Jz B-1(Q)" ' AC)QK, (16)
T

- ) "
"(")=‘/"d"‘g[n+2i~,(?)'1—2iy(f) "]‘ an

and K is a real-valued constant vector defined as the interface stress intensity factor. In eqn
(17). 7 is an arbitrary length scale and Q = [q,.q..q;] where g, is the eigenvector of the
following equation:

where

[ 1)
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(W+iiD)q = 0. (18)
The eigenvalues of 4 of eqn (18) satisfy (Ting. 1986)
A—pi=0, (19)
where f is given by
p = {—i{(WD~ ")} 2. (20)

The bimaterial constant y is related to § by

v = Z—In log %—% 4}
The matrix Q is chosen such that (Wu, 1989a):
QDQ =1. (22)
Q'WQ = ipdiag[l. —1.0]. (23)
where diag stands for diagonal matrix. From eqns (22) and (23) one can show that
Q" 'diag[l, —1,0]Q" = —iP, (24)
where
p= /!’: Wi . 25)
Using egn (25), Wu (19894) showed that
R[] = (Q") ' diag[c. ¢, 1}(Q").
=1+ #[c]P+ (| = A[cDP", (26)

where .# denotes the imaginary part. Using eqn (26), Wu (1989a) obtained the real-form
expressions for o,, ahead of the crack (i.e. x, =0, x, > 0) and the relative crack face
displacements.

It is shown here that eqn (26) can be generalized for any diagonal matrix
A = [Ay. 43, 43). Let A be rewritten as

.. - ..\ .. + '.1 .
A= i+ 2 diag (1, - 1,0]+ (’l«;f—- -;.,)dmg [1,1,0]. @7)
Using eqn (24). onc then has
. P Ay — Ay . A+ A\ o,
Q") 'AQ") = Al=i DS P 4= 2 e, (28)

From the Hayley-Hamilton thecorem that a matrix satisfics its own characteristic equation,
one can show, from eqns (18) and (19), that

P'+P=0. (29)

From eqns (14) and (25). one also has
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ND-!' = il+8P. (30)

With eqns (28), (29) and (30). one can show that

1 .
N¥(z,) = —=Ig0(z)1+9: (=) P +4: ()P €1))
R4
where
gol(z,) = \/3—1 32)
o () - (7))
96 = Foosh m \Tx25\7) ~w1-29\7) /)' 63
s () o ()
9 =V s\ \7) =\ s G4
and

m=e". (39

Substituting eqn (31) into eqn (8). and egqn (8) into eqn (6) leads to
® = \[;x[ 5 BA,,(z)B"I’"]K. (36)
n=10

An = diilg [.‘]n(:t)‘ .‘/n(:l)v gn(:,\)]‘ (37)

AHltJ

where

Similarly, the displucement vector is given by

u= \/i ;J[}i AA,(2)B- 'P"]K. (38)

n=

Following a similar procedure, one can show that the stress function and displacement
vector for the lower material are also given by eqns (36) and (38), respectively, if w is
replaced by ' defined as

W' = d =e ", 39)

o)

and A, B and z, are replaced by A’, B” and =}, respectively.
Note that since the functions g, and g, in eqns (36) and (38) contain an arbitrary
length parameter 7, the stress intensity factor K also depends on 7. In fact, it can be shown

that
Kil) = R[(;l)h.]K(Z)‘ (40)

where K" and K@ are the stress intensity factors corresponding to 7 =7, and 7 = F,,
respectively.

Equations (36) and (38) are the expressions of the complete crack-tip fields for the
extending interface crack. If the medium is homogeneous, i.e. 7 = 0, the crack-tip field
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reduces to that derived by Wu (1989b). Along the interface, from eqns (36) and (5), the
stresses !, = g;; are given by

1 ry
- \/z_mk[(;'> ]K. @1

thus agreeing with the result of (Wu, 1989a). In eqn (41), the matrix function R is given by
eqn (26) and r is the distance from the crack-tip. Setting r = 7 in eqn (41), one has

t= K. (42)

 2nf

Equation (42) can be regarded as an alternative definition of K. The crack face displacement
vector for the upper crack face is simplified to

= zrl"R[A : (')'7 K 43
"=V Nleosh i+ \s) )

L '=—-s[AB']. (44)

The crack face displacement vector for the lower crack face is

R A cosh (ny)(1 +2iy) \F ' (43)

It should be pointed out that in the foregoing analysis, it was tacitly assumed that the
matrices B, B’ and M can be inverted. This is true as long as the crack velocity v is lower
than the minimum of the critical velocities Vg, Vi and Vi for which det [B(Vg)] =0,
det [B*(¥'R)] = 0 and det [M(Vsy)] = 0. The critical velocities Vi, V' are the Rayleigh wave
speeds for the upper and lower material, respectively, and Vg is the Stonely wave speed
for the bimaterial (Barnett and Lothe, 1974). It is interesting to note that as the bimaterial
constant # satisfies (Ting, 1986)

det [W+ifiD] = 0, (46)

the condition for Vs implies that at Vg, =1 and the corresponding y becomes

unbounded.
The energy rclease rate due to crack extension can be derived by a similar procedure

outlined in Wu (1989a). The derivation will not be repeated here and the result is given by
G, =KD 'K. (47

Note that although the stress intensity factors are dependent on the length scale 7, the
energy release rate is independent of the choices of 7. To see this fact, let K" and K be
the stress intensity factors corresponding to F = 7, and 7 = 7, respectively. From eqn (40),
one can show
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(K‘ n)rf) - IK( R (K(Z))TRT[(r:_‘)w]ﬁ~ lR[(f—‘)ﬂ]Ku).

= (Ktl))TD— IK(Z).

Thus eqn (47) is independent of F.

4. ISOTROPIC BIMATERIALS

In this section, the crack-tip fields and associated energy release rate are specialized
for isotropic bimaterials. For isotropic bimaterials, the plane deformation and anti-plane
deformation can be uncoupled. Only the plane deformation is considered here. As discussed
in the previous section, the expressions for the stress function and displacement vector are
similar for the upper and lower half-spaces, so attention need only be paid to the upper

half-space.
The matrices A and B are given by (Wu, 1989b)
I —if,
[
23, l +ﬂ§:l
B=yu , . . 49
» ’[—-(H/fs) 2ift “
where

v 2
B, = l—(;,:). (50)

u is the shear modulus, V) is the longitudinal wave velocity and ¥V, is the shear wave
velocity. The cigenvalue p, is given by iff,. The inverse matrix of B is

~ Lo - +/:g)]
B'=—-— . .
HA [(I +3) 2if8, (61))
where A = 4f8, fi,— (1 + f#3)°. The matrices W and D are given by
0 w
W= [—w 0]‘ (52)
_|d 0
0= [0 d:]' (53)
where
! NPT | ,
w=,»;,-37(l+/32 —Zﬁlﬂz)—;‘x(l-i-ﬂz—-Zﬂ,ﬂz), (54)
= ! 3 __l__ (1= B2
d, —;&ﬂ:(l—ﬂz)-i-u,A,ﬁz(l B3, (55)
dy = ! (t-p3 _..l_. ‘(1= B3) 56
:-#‘A‘ﬂu —ﬂ:)+“,A,ﬂ,( 2). (56)

From eqn (20), the bimaterial constant f is
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w
B= (57
d\d,
The matrix P defined by eqn (25) is
d:
o i
P= (58)
d, 0 !
d.
and
P = —L (59)
The matrix D' in eqn (47) is given by
D'=(-4HD. (60)
With eqn (59). the stress function given by eqn (36) can be simplified to
2 - -
o= ’E(.W[BA.,(:)B “'+.#[BA,(2)B '|P)K, (61)
where
A, = diag[hy(z0). b (=), (62)
ho(2,) = golz,) ~g:(2,). (63)
hl(:i) = iyl(:t)‘ (64)

and g, ¢, ¢, are given by eqns (32), (33) and (34), respectively. Similarly, the displacement
vector given by eqn (38) becomes

u= \/72; (2[AA(2)B ']+ .#[AA,(2)B '|P)K. (65)

Equation (65) can also be written in the component form as

u, = \/ i ;IIZS Z, (.;r[u,,] —ﬂil E3ap Z; J[ll,,])K,. (66)
where ¢ is the permutation tensor and U, is given by
Ui = =iBs(2ho(21) = (1 + f)ho(22)). (67)
Uyr = (L+Bhe(2)) =288 :h0(z2). (68)
Uz =20, Bho(z0) = (1 + BDho(22), (69)
Uss = —if Qhy(z2) = (1 + (1)), (70)

and U, is obtained from U, by replacing h, with h,. From eqns (4), (5) and (61), the
stresses can be expressed as
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21 2. ,
g, = \/; —A— Z (W[Suz] Z E3xp I[S'/ﬂ]) K. N

where S, is given by

Siin = = 2B [(14+281 = BHAS(z) — (1 + BAS(=)). (72)
Sz = (1+BD(1+287 - Bh3(=)) — 4B B:hS(=2). (73
Siz = 481 B:h8(z ) — (1 + B3) AY(=2), (74)
Si22 = — 2B, (L+ B (E(z2) — hi(z)). (7%
Sa2 = =281+ B (AN — A3 ), (76)
Sz22 = 4B B:h3() — (L+ B PAS( ). an
the function A being
itz = L),

1 Y Lz \"
) o
4 u)\h (n/)\, z r w\r

and S,,, is obtained from S,,, by replacing /si2 with /¥ given b
' 12 DY ICp £ g y

ey = 16D,

a0 G))
o (W(EY ), (19)
4cosh(n/)\/ @AT

If the upper and the lower material are identical, fiy(z,) = \/:,, hiz) = l/2\/:,.
hy = ht =0, and eqns (66) and (71) reduce to the results given by Freund (1976). The
crack-tip fields of a stationary interface crack can not be obtained directly from eqns (61)
and (65) because A =0 as ¢ = 0. However, if proper limits as ¢ — 0 are taken, it can be
shown that

lim Bdiag[/(z). f(z)]B " = () +x: %”‘[ ] 0

. y ) ) a1 RELGES)) K—1
!valeS[f(-nlf(-:)]B l—‘;;,(f(‘)[_(;\---l) —i(k+1) ]

] Ot i
RNCTCET O

where k = 3 —4v, v being the Poisson ratio, and : = x, +ix,. The limiting form of P is given
by
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0 1
. .
ime- ) o) (82

The stationary crack-tip fields obtained by substituting eqns (80). (81) and (82) into eqns
(61) and (65) agree with those derived by Rice and Sih (1965) and by Chen (1983) if K is

replaced by \"/;_t cosh (n7)K.

5. S.LF. DUE TO BODY FORCES AND DISLOCATIONS

In this section the stress intensity factors due to body forces and dislocations for a
semi-infinite crack are given. The body forces. dislocation and crack are assumed to translate
in the x-direction at a constant velocity ¢.

The problem in which a crack propagates in an homogeneous medium has been
analyzed by Wu (1988) by examining the interaction between the body forces or dislocations
and the crack. The treatment of that work can be extended to the present problem and the
result can be shown to be

s ([ (e, o,
o= -2 M M or A . A LA ) .
A DW(L (0-\'1 N axy ’) d +£' ((".\‘l ah cxy ')d4> (83)

where a, is the dislocation density and f, is the body force density; A and 4 denote the
upper and lower halfspaces, respectively ; the functions @, and 4, are the universal functions
in the crack-tip ficlds of eqns (36) and (38) for the upper material :

®, =D, K (84)

Wiy

u, = i, K, (85)

and similarly @ and 4, are the universal functions in the crack-tip ticlds for the lower

material.
From cqns (83) and (43), the stress intensity fuctors due to loading T on the upper

crack face is obtained as
K= J‘ H()T(r)dr, (86)
4

where H(r) is given by

H(r) = \/ 2op| 1 (’)iy L (87)
"=\ cosh () \F )
as the weight function for T. For homogeneous media (y = 0), it can be shown that

D=L,

o

and eqn (87) reduces to

H(r) = ~|~ =1, (88)
r

NEL

which is independent of the material constants. This fact has been reached by Wu (1988).
From eqn (45), the weight function H’ for loading at the lower crack face can be shown to

be
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2 . 1 ry
o - [4 R =1
H = nr DR [cosh (z7) (r) :]L ’ (89)

The weight function H* for self-equilibrating tractions on the crack face is simply given by
the sumof Hand —H":

H*=H-H’,

- [2pr| L (f)h]l) 90
“Noar cosh () \F ) 0)

Using the following identities :

R[JR[d] = R[cd]. o1
D = D 'R[cosh® (xy)]. 92)
DPD-' = -P. 93

eqn (90) can be simplified as

H*= [— R[cosh (ny)(.) ] (94)
nr 4

Consider the loading used in Willis (1971):

A
| = (r+IA,) T, (nosummation on j), (95)

where 4, is a constant length parameter and T a constant reference traction. For isotropic
interface cracks, the stress intensity fuctors were calculated to be

e G ) )
-l 0

e () o5
o)) o

where d| and d, are given by eqns (55) and (56). respectively. From eqns (47) and (60), the
corresponding energy rclease rate is given by

n (1+4y%) ) > .
T —— - 2 T542 5 2 .
G, § cosh™ () (d.l.T.+d;}._T'_+ sm( log( >>,/d d.2, T.T) (98)

The above result is different from that obtained by Willis (1971). It is believed that Willis’
result is questionable as his expression does not reduce to the correct form for homogeneous
media. For the special case: 4, = i, = 4, T, = T, = T. eqn (98) becomes

8AS 27:4-E
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Fig. 2. G} as a function of v for the Moho interface. basaltic layer and upper mantle of the earth.

8 (1+4)

4T —m(dl‘*'d:)- 99)

GiI=G

For comparison purposes, G} has been plotted in Fig. 2 as a function of v for a particular
interface considered by Willis (1971) with 8, = 6.5, B, = 3.74. B, = 7.76, B2 = 4.36 kms ™',
p =285and p’ = 3.3 gcm ™. These values correspond to the Moho interface between the
basaltic layer and the upper mantle of the earth (Jeffreys, 1970). Also plotted on Fig. 2 are

the values G} would have if the crack were propagating through a homogeneous material
with propertics of either the basaltic layer or the upper mantle. For v less than 2 kms ™!,
it is scen from Fig. 2 that the interface G} is nearly equal to the average of the G} for the
basaltic layer and the upper mantle. Also, for v less than 2 km s™', the values of G
arc almost the same as the values for the stationary crack. The inertial effects become signi-
ficant as v approaches Ve for the interface, Vy for the basaltic layer and V5, for the upper
mantle. Figure 2 shows that the values of Vg and Vi are almost the same and are given by
3.4 km s "' approximately and Vi is about 4.0 kms "
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